1,044 research outputs found

    Quantifying the modern recharge of the "fossil" Sahara aquifers

    Get PDF
    The North-Western Sahara Aquifer System (NWSAS), one of the world's largest groundwater systems, shows an overall piezometric decline associated with increasing withdrawals. Estimating the recharge rate in such a semiarid system is challenging but crucial for sustainable water development. In this paper, the recharge of the NWSAS is estimated using a regional water budget based on GRACE terrestrial water storage monthly records, soil moisture from the GLDAS (a land data system that assimilates hydrological information), and groundwater pumping rates. A cumulated natural recharge rate of 1.40 +/- 0.90 km(3) yr(-1) is estimated for the two main aquifers. Our results suggest a renewal rate of about 40% which partly contradicts the premise that recharge in this area should be very low or even null. Aquifer depletion inferred from our analysis is consistent with observed piezometric head decline in the two main aquifers in the region. Annual recharge variations were also estimated and vary between 0 and 4.40 km(3) yr(-1) for the period 2003-2010. These values correspond to a recharge between 0 and 6.75 mm yr(-1) on the 650,000 km(2) of outcropping areas of the aquifers, which is consistent with the expected weak and sporadic recharge in this semiarid environment. These variations are also in line with annual rainfall variation with a lag time of about 1 year

    Multi-q Pattern Classification of Polarization Curves

    Get PDF
    Several experimental measurements are expressed in the form of one-dimensional profiles, for which there is a scarcity of methodologies able to classify the pertinence of a given result to a specific group. The polarization curves that evaluate the corrosion kinetics of electrodes in corrosive media are an application where the behavior is chiefly analyzed from profiles. Polarization curves are indeed a classic method to determine the global kinetics of metallic electrodes, but the strong nonlinearity from different metals and alloys can overlap and the discrimination becomes a challenging problem. Moreover, even finding a typical curve from replicated tests requires subjective judgement. In this paper we used the so-called multi-q approach based on the Tsallis statistics in a classification engine to separate multiple polarization curve profiles of two stainless steels. We collected 48 experimental polarization curves in aqueous chloride medium of two stainless steel types, with different resistance against localized corrosion. Multi-q pattern analysis was then carried out on a wide potential range, from cathodic up to anodic regions. An excellent classification rate was obtained, at a success rate of 90%, 80%, and 83% for low (cathodic), high (anodic), and both potential ranges, respectively, using only 2% of the original profile data. These results show the potential of the proposed approach towards efficient, robust, systematic and automatic classification of highly non-linear profile curves.Comment: 12 pages, 7 figure

    Practical issues in the development of a minimalistic power management solution for WSNs

    Get PDF
    A flexible Wireless Sensor Network platform for implementation of diverse applications has been developed and deployed at Instituto Superior Técnico - Technical University of Lisbon (IST-TUL). Since its initial deployment in 2007, this testbed has grown steadily, supporting new nodes, applications and experiments. However, some initial problems, which were solved on an ad hoc basis, were becoming more serious as the network spanned throughout the campus. Major issues, like global power management, have to be tackled not only with traditional protocol level approaches but also from a system’s viewpoint, providing solutions capable of guaranteeing a consistent testbed. We discuss the main issues related with the development of power management solutions, presenting our architecture, design choices and implementation, and address the lessons learnt from its integration. Experimental evaluation of our solution has shown considerable energy savings, extending network lifetime by up to nine times

    New perspectives for hypertension management: progress in methodological and technological developments

    Get PDF
    : Hypertension is the most common and preventable risk factor for cardiovascular disease (CVD), accounting for 20% of deaths worldwide. However, 2/3 of people with hypertension are undiagnosed, untreated, or under treated. A multi-pronged approach is needed to improve hypertension management. Elevated blood pressure (BP) in childhood is a predictor of hypertension and CVD in adulthood; therefore, screening and education programmes should start early and continue throughout the lifespan. Home BP monitoring can be used to engage patients and improve BP control rates. Progress in imaging technology allows for the detection of preclinical disease, which may help identify patients who are at greatest risk of CV events. There is a need to optimize the use of current BP control strategies including lifestyle modifications, antihypertensive agents, and devices. Reducing the complexity of pharmacological therapy using single-pill combinations can improve patient adherence and BP control and may reduce physician inertia. Other strategies that can improve patient adherence include education and reassurance to address misconceptions, engaging patients in management decisions, and using digital tools. Strategies to improve physician therapeutic inertia, such as reminders, education, physician-peer visits, and task-sharing may improve BP control rates. Digital health technologies, such as telemonitoring, wearables, and other mobile health platforms, are becoming frequently adopted tools in hypertension management, particularly those that have undergone regulatory approval. Finally, to fight the consequences of hypertension on a global scale, healthcare system approaches to cardiovascular risk factor management are needed. Government policies should promote routine BP screening, salt-, sugar-, and alcohol reduction programmes, encourage physical activity, and target obesity control

    11th Applied isotope geochemistery conference AIG-11

    Get PDF
    36Cl measurements in groundwaters of the deep confined aquifer of the Lake Chad Basin (LCB) were performed in order to constrain groundwater geochemical ages and residence times. Twenty-seven wells were sampled in Nigeria, Niger and Chad in the southern parts of the large (700 000 km2) multilayered aquifer of the LCB. 36Cl/Cl values range between 11±1.10-15 to 148±8.10-15 at/at. The highest ratios are observed near the recharge zone of the Nigerian part of the Continental Terminal aquifer, while the lowest ones are found in wells located near the southern fringe of the present-day lake Chad. Chloride concentrations are low (below 100 mg/l) and not correlated to the 36Cl/Cl values, indicating negligible dissolution of evaporites in most samples. Reliable 36Cl ages can be calculated along the different flow paths investigated, suggesting residence times of the deep groundwaters larger than 300 000 years. These results are consistent with new AMS-14C data below the detection limit but are in contradiction with previous 14C data obtained in the area

    Estimate of Novel Influenza A/H1N1 cases in Mexico at the early stage of the pandemic with a spatially structured epidemic model

    Get PDF
    Determining the number of cases in an epidemic is fundamental to properly evaluate several disease features of high relevance for public health policies such as mortality, morbidity or hospitalization rates. Surveillance efforts are however incomplete especially at the early stage of an outbreak due to the ongoing learning process about the disease characteristics. An example of this is represented by the number of H1N1 influenza cases in Mexico during the first months of the current pandemic. Several estimates using backtrack calculation based on imported cases from Mexico in other countries point out that the actual number of cases was likely orders of magnitude larger than the number of confirmed cases. Realistic computational models fed with the best available estimates of the basic disease parameters can provide an ab-initio calculation of the number of cases in Mexico as other countries. Here we use the Global Epidemic and Mobility (GLEaM) model to obtain estimates of the size of the epidemic in Mexico as well as of imported cases at the end of April and beginning of May. We find that the reference range for the number of cases in Mexico on April 30th is 121,000 to 1,394,000 in good agreement with the recent estimates by Lipsitch et al. [M. Lipsitch, PloS One 4:e6895 (2009)]. The number of imported cases from Mexico in several countries is found to be in good agreement with the surveillance data

    Modeling vaccination campaigns and the Fall/Winter 2009 activity of the new A(H1N1) influenza in the Northern Hemisphere

    Get PDF
    The unfolding of pandemic influenza A(H1N1) for Fall 2009 in the Northern Hemisphere is still uncertain. Plans for vaccination campaigns and vaccine trials are underway, with the first batches expected to be available early October. Several studies point to the possibility of an anticipated pandemic peak that could undermine the effectiveness of vaccination strategies. Here we use a structured global epidemic and mobility metapopulation model to assess the effectiveness of massive vaccination campaigns for the Fall/Winter 2009. Mitigation effects are explored depending on the interplay between the predicted pandemic evolution and the expected delivery of vaccines. The model is calibrated using recent estimates on the transmissibility of the new A(H1N1) influenza. Results show that if additional intervention strategies were not used to delay the time of pandemic peak, vaccination may not be able to considerably reduce the cumulative number of cases, even when the mass vaccination campaign is started as early as mid-October. Prioritized vaccination would be crucial in slowing down the pandemic evolution and reducing its burden.Comment: Paper: 19 Pages, 3 Figures. Supplementary Information: 10 pages, 8 Table

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore